
Calogero's Lab & BGcore

Bioinformatics Bioinformatics Genomics core-lab O'M B C



Our activities

- Our research group is dedicated to pioneering advancements in data reproducibility and single-cell omics analysis.
- We're driving progress in bioinformatics and wet lab support for bulk and single-cell/spatial transcriptomics with a strong commitment to transparency, reliability, and innovation.

BGcore

CalogeroLab

Our activities

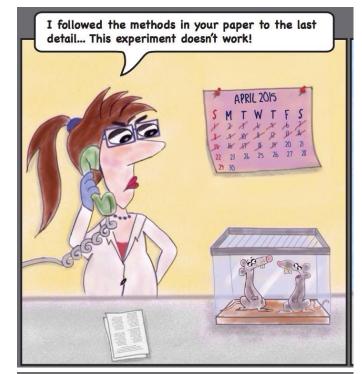
Reproducible Bioinformatics Project:

 We lead the charge in promoting reproducible research practices, ensuring that our methodologies are transparent and results are reliable, with the <u>Reproducible Bioinformatic Project</u>.

Docker-Based Tools:

 Our tools, including <u>docker4seq</u> for bulk RNAseq analysis and <u>rCASC</u> for singlecell RNAseq analysis, leverage Docker containers for efficient, scalable, and reproducible workflows.

Personalized Docker Containers:

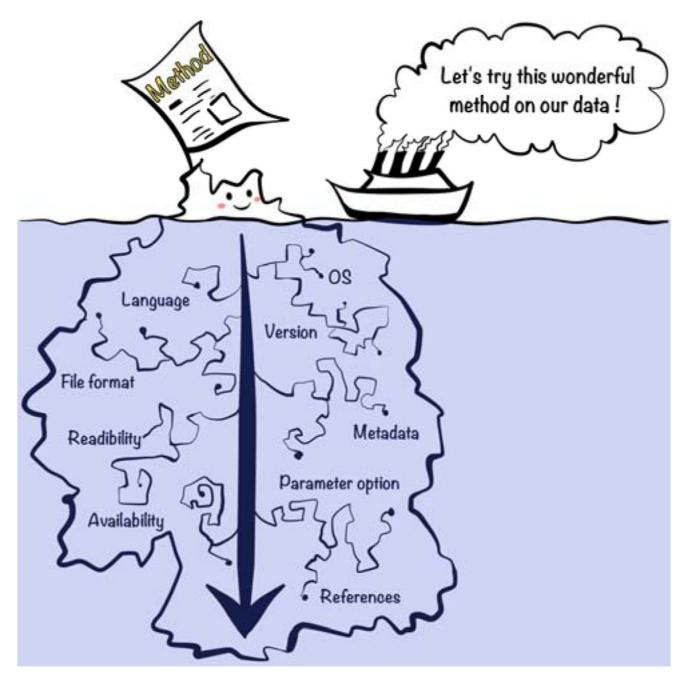

 We specialize in building sophisticated Docker containers, exemplified by <u>CREDOgui</u>, facilitating seamless deployment and execution of bioinformatics pipelines.

Facility for Wet Lab and Bioinformatics Support:

 Through <u>BGcore</u>, we offer comprehensive support in experimental design, data generation, and analysis for bulk and single-cell/spatial transcriptomics.

Top 5 Factors Affecting Reproducibility in Research

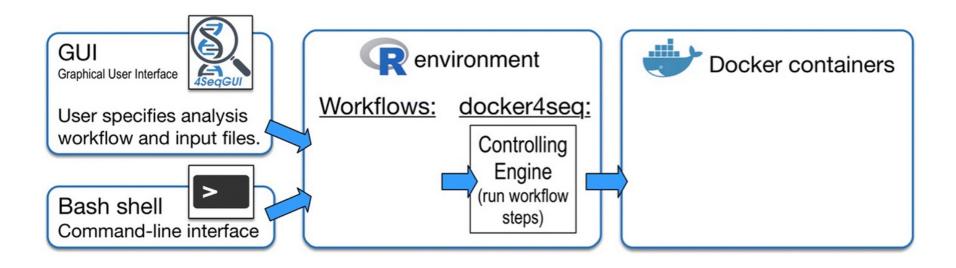
- Lack of Access to Raw Data and Methodologies
- Invalidated Biological Materials
- Lack of Knowledge to Analyze Data
- Incorrect Laboratory Practices
- Undervaluing Negative Results



Top 5 Factors Affecting Reproducibility in Research

- Lack of Access to Raw Data and Methodologies
- Invalidated Biological Materials
- Lack of Knowledge to Analyze Data
- Incorrect Laboratory Practices
- Undervaluing Negative Results

Reproducibility criticalities in Bioinformatics


Reproducible Bioinformatics Project

Research Open access Published: 15 October 2018

Reproducible bioinformatics project: a community for reproducible bioinformatics analysis pipelines

Neha Kulkarni, Luca Alessandrì, Riccardo Panero, Maddalena Arigoni, Martina Olivero, Giulio Ferrero, Francesca Cordero ☑, Marco Beccuti & Raffaele A. Calogero ☑

BMC Bioinformatics 19, Article number: 349 (2018) | Cite this article

Lack of Access to Raw Data and Methodologies

> Bioinformatics. 2018 Mar 1;34(5):871-872. doi: 10.1093/bioinformatics/btx674.

SeqBox: RNAseq/ChIPseq reproducible analysis on a consumer game computer

Marco Beccuti ¹, Francesca Cordero ¹, Maddalena Arigoni ², Riccardo Panero ², Elvio G Amparore ¹, Susanna Donatelli ¹, Raffaele A Calogero ²

https://github.com/kendomaniac/docker4seq

L. Alessandri

> Gigascience. 2019 Sep 1;8(9):giz105. doi: 10.1093/gigascience/giz105.

rCASC: reproducible classification analysis of singlecell sequencing data

Luca Alessandrì ¹, Francesca Cordero ², Marco Beccuti ², Maddalena Arigoni ¹, Martina Olivero ³, Greta Romano ², Sergio Rabellino ², Nicola Licheri ², Gennaro De Libero ⁴, Luigia Pace ⁵, Raffaele A Calogero ¹

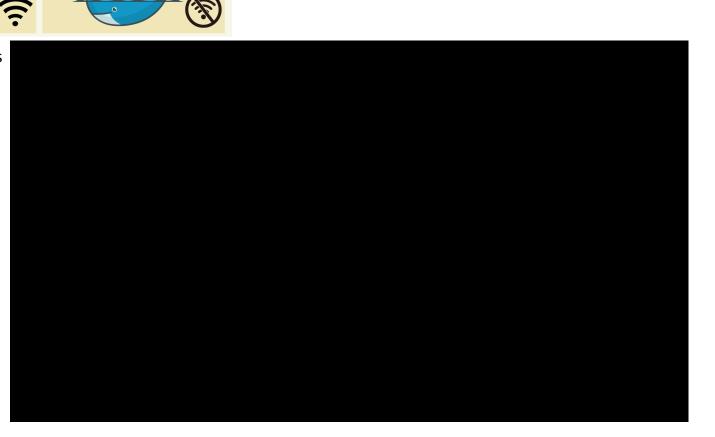
https://github.com/kendomaniac/rCASC

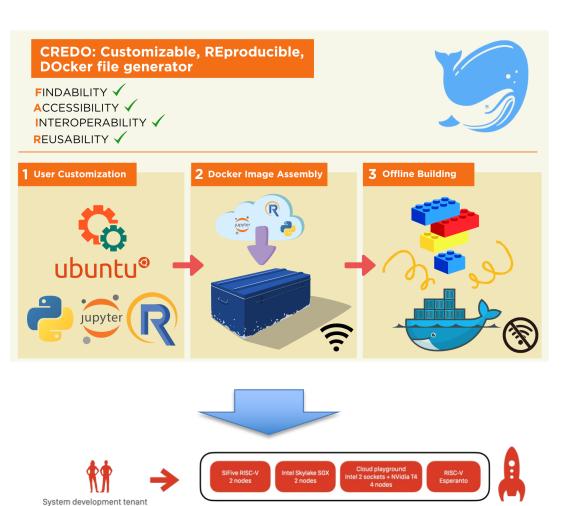
Lack of Access to Raw Data and Methodologies

2 Docker Image Assembly

3 Offline Building

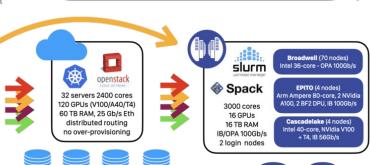
A container is a computer science kit!


Alessandri et al. In Press BMC Bioinformatics


User Customization

ubuntu®

L. Alessandri



L. Alessandri

E. Martelli Consortium GARR

LUSTRE

scratch

(20 TB)

home

(50 TB)

CEPH

replica3

fast

(40 TB)

Tenant-3

EMC2

work

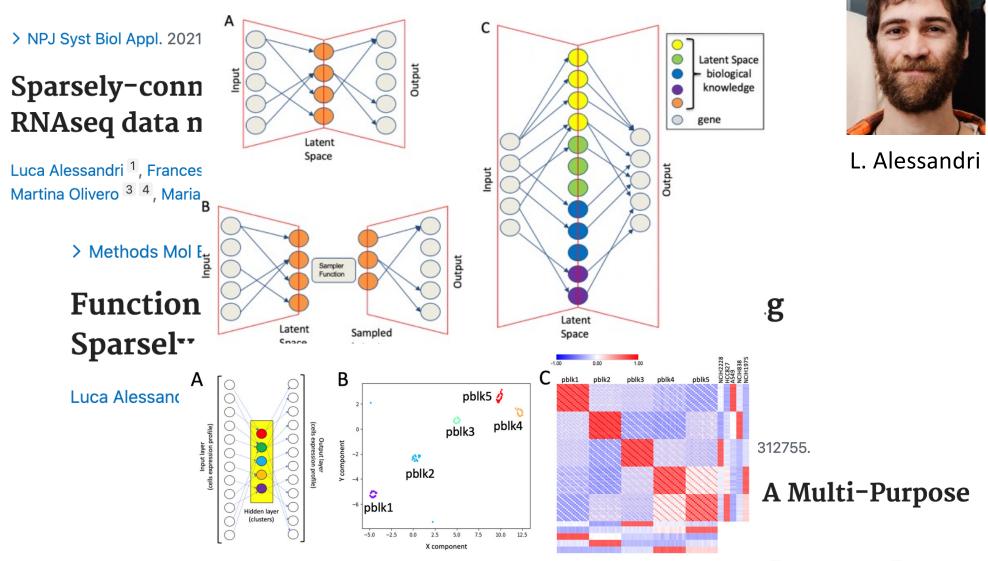
CEPH

Unity ErasureCode Avamar

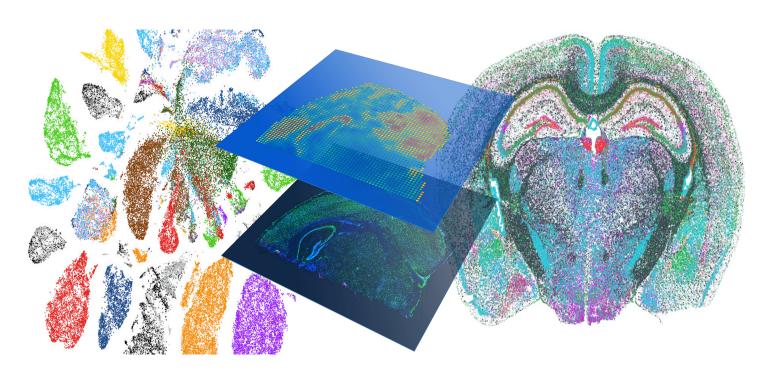
cold

(1 PB)

EMC2


backup

(1 PB)


Biologically driven dimensionality

reduction

Luca Alessandri ¹ ², Maria Luisa Ratto ¹, Sandro Gepiro Contaldo ², Marco Beccuti ², Francesca Cordero ², Maddalena Arigoni ¹, Raffaele A Calogero ¹

Spatial transcriptomics

L. Alessandri

> Gigascience. 2022 Aug 10:11:giac075. doi: 10.1093/gigascience/giac075.

Stardust: improving spatial transcriptomics data analysis through space-aware modularity optimization-based clustering

Simone Avesani ¹, Eva Viesi ¹, Luca Alessandrì ², Giovanni Motterle ¹, Vincenzo Bonnici ³, Marco Beccuti ⁴, Raffaele Calogero ², Rosalba Giugno ¹

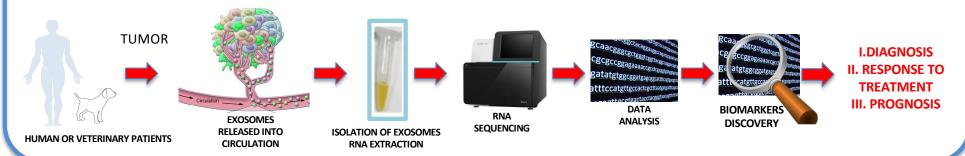
Top 5 Factors Affecting Reproducibility in Research

- Lack of Access to Raw Data and Methodologies
- Invalidated Biological Materials
- Lack of Knowledge to Analyze Data
- Incorrect Laboratory Practices
- Undervaluing Negative Results

Services at BGcore

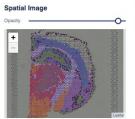
M. Arigoni

I. Bulk RNA sequencing

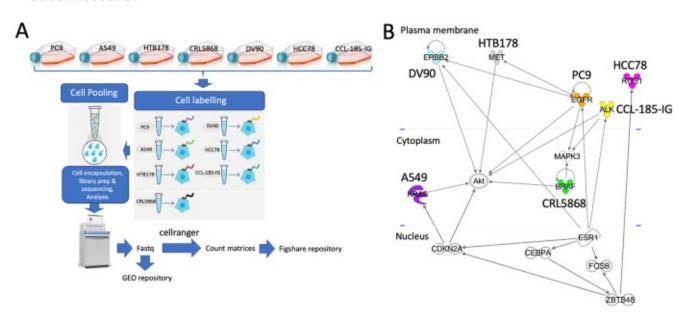


III. Extracellular vesicles RNA and small RNA sequencing

IV. Spatial Transcriptomics from FFPE and FF tissues


Spatial transcriptomics is a groundbreaking molecular profiling method that allows scientists to measure all the gene activity in a tissue sample and map where the activity is occurring.

AREA OF INTEREST


GENE
EXPRESSION
PROFILING
RETAINING
SPATIAL
CONTEXT
INFORMATION

Benchmark experiments

> Sci Data. 2024 Feb 2;11(1):159. doi: 10.1038/s41597-024-03002-y.

A single cell RNAseq benchmark experiment embedding "controlled" cancer heterogeneity

Maddalena Arigoni ^{# 1}, Maria Luisa Ratto ^{# 1}, Federica Riccardo ¹, Elisa Balmas ¹, Lorenzo Calogero ², Francesca Cordero ³, Marco Beccuti ³, Raffaele A Calogero ⁴, Luca Alessandri ¹

M. Arigoni

ML. Ratto

- In preparation:
 - Multi-omics benchmark (scRNAseq, scATACseq)
 - Spatial transcriptomics benchmark (Visium 10XGenomics, Curio Bioscience)

Top 5 Factors Affecting Reproducibility in Research

- Lack of Access to Raw Data and Methodologies
- Invalidated Biological Materials
- Lack of Knowledge to Analyze Data
- Incorrect Laboratory Practices
- Undervaluing Negative Results

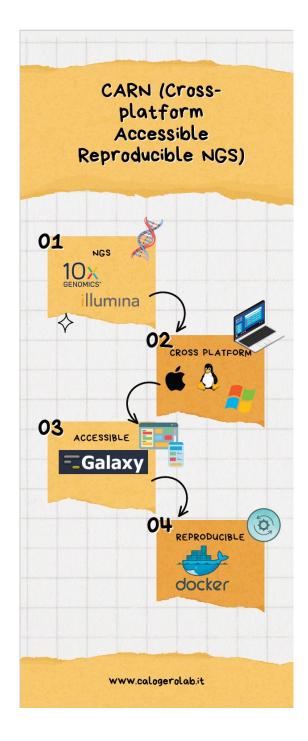
Hands-on data analysis courses for Life scientists

The side path to bioinformatics

A. Donofrio

S. Fasciolo

S. Bucatariu



J. Di Mauro

I. Castellano

- Becoming proficient in bioinformatics necessitates honing computing skills, a process that cannot be achieved within a short span of a few months.
- Mastery of scripting requires consistent practice over an extended period, typically spanning years.
- We provide ongoing support for students to develop the necessary expertise to pursue a career in bioinformatics starting from their first year in the Biotechnology course.

- Our goal is to make basic analyses accessible to any life scientist, thereby shortening analysis times.
- Life scientists will be able to perform initial analyses independently, freeing bioinformaticians to focus on more complex tasks.
- This approach not only democratizes omics analysis but also supports the principles of open science, ensuring that our software can be widely used, adapted, and built upon.
- Specifically, CARN provides a user-friendly interface via the Galaxy platform, CARN facilitates complex genomic analyses without necessitating command-line skills, integrating diverse NGS pipelines for a thorough analysis process from raw data to downstream results.
- Utilizing Docker containers, the project guarantees both functional and computational reproducibility, thus ensuring reliable outcomes.

L. Alessandri

A. Donofrio

S. Bucatariu

What we offers for collaboration/service

- Experimental design support.
- Bulk RNAseq/miRNAseq library prep.
- Spatial transcriptomics (10Xgenomics/Curio Biosciences) from sections to data analysis.
- Bioinformatics support for data analysis (Bulk and single cell).

On-going collaborations

Biotecnologie Molecolari e Scienze per la Salute

Molecular Biotechnology Center

